Chapter Six
Spherically Symmetric Potentials and Hydrogenic Atoms

We shall now turn our attention to the study of the motion of a particle in a
potential V() which depends only on the magnitude r of the position vector 7 of
the particle with respect to some origin. Such a potential is called a spherically
symmetric potential or a central potential. This is one of the most important
problems in quantum mechanics and forms the starting point of the application of
guantum mechanics to the understanding of atomic : and
nuclear structure.
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8.1 Separation of the Wave Equation into Radial and Angular Parts

If m is the mass of the particle, then its Hamiltonian is
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Since V (r) is spherically symmetric, it is most convenient to use the spherical
polar coordinates. Expressing the V2 operator in spherical polar coordinates, the
Hamiltonian (8.1) becomes
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The representation of the square of the angular momentum operator in spherical
polar coordinates is given by
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We may write
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The time-independent Schrddinger equation for the particle can be written as
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This equation can be solved by using the method of separation of variables. Let us
write
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Substituting into (8.6),
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Dividing by R(r)¥(6, ¢)/r°,
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The left-hand side of this equation depends only on r and the right-hand side
depends only on 8 and ¢. Therefore, both sides must be equal to a constant.
Calling this constant A, we obtain the radial equation
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and the angular equation
L’Y(6, ¢) = AR Y(6, 0) ...(8.9)
8.1.1 The Angular Equation

Equation (8.9) is an eigenvalue equation for the operator L. We recall from
chapter 7 that physically acceptable solutions of this equation are obtained for
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Thus, the eigenvalues of L? that corresponding eigenfunctions are the spherical
harmonics Y;,,, (8, ¢) defined in (7.20) and (7.21). The spherical harmonics

Yim, (6, @) are also eigenfunctions of the z-component of the angular momentum
L, such that
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The magnitude of L in state Y;,,,, is /I(I + 1)7 and the possible values of the
projection L, are the (21 + 1) values of m;h.

The state Y,,,, (6, ¢) has the parity of [.
8.1.2 The Radial Equation

Substituting (8.10) into (8.8), the radial equation becomes
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If we put, R(r) = u(r)/r
then the equation for the new radial function u(r) is
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This equation shows that the radial motion is similar to the one-dimensional
motion of a particle in the “effective” potential consequence
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The additional term /(I + 1)A*/2mr? is due to the “centrifugal barrier” which is
a consequence of the non-zero angular momentum. This can be understood as
follows: According to classical mechanics, if a particle has angular momentum
L about an axis, then its angular velocity is
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where r is the distance of the particle from the axis. The “centrifugal force” on the
particle is
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Shapes of the centrifugal barrier, effective potential and Coulomb potential.
8.2 Reduction of a Two-Body Problem to an Equivalent One-Body Problem

In what follows we shall solve the radial equation for a hydrogenic atom, which
consists of a nucleus and an electron interacting via the attractive Coulomb force
which depends on the magnitude of the distance between the two.

For a two-body system, if the potential energy depends only on the coordinates of
one particle relative to the other, then the problem can be reduced to an equivalent
one-body problem along with a uniform translational motion of the center of mass
of the two-body system.

Consider two particles, of masses m, and m,, interacting via a potential
V (r, - r,) which depends only upon the relative coordinate r; - 7.

The time-independent Schrddinger equation for the system is,
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where E is the total energy of the system. Let us now introduce the relative
coordinate
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and the center of mass coordinate
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A simple calculation will show that
2 2 2 2
_ V2 h V2 = _Lvé _ h—Vi ...(8.18)
2my Y 2m, 2M 2u
where
M=my + m, ...(8.19)
and o mm ...(8.20)

m; + ny,

The quantity u is called the reduced mass of the two-particle system. The
Schrédinger Equation (8.15) becomes
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Now, since the potential V () depends only on the relative coordinate, the wave
function W(R, r) can be written as a product of functions of R and
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Substituting into (8.21) it can be easily shown that the functions ®(R) and W (r)
satisfy, respectively, the equations
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Equation (8.23) describes the motion of the center of mass. It says that the center
of mass moves as a free particle of mass M and energy Eg.

Equation (8.24) describes the relative motion of the particles. It says that the
relative motion is same as that of a particle of mass u moving in the potential V ().
Clearly ...(8.25)
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By separating the center-of-mass motion, the solution of the problem gets
considerably simplified.



