
Chapter Six  

Spherically Symmetric Potentials and Hydrogenic Atoms 

We shall now turn our attention to the study of the motion of a particle in a 

potential 𝑉(𝑟)  which depends only on the magnitude 𝑟 of the position vector 𝑟 of 

the particle with respect to some origin. Such a potential is called a spherically 

symmetric potential or a central potential. This is one of the most important 

problems in quantum mechanics and forms the starting point of the application of 

quantum mechanics to the understanding of atomic and 

nuclear structure. 

 

 

 

 

 

8.1 Separation of the Wave Equation into Radial and Angular Parts 

If m is the mass of the particle, then its Hamiltonian is 

𝐻 = −
ℏ2

2𝑚
∇2 + 𝑉(𝑟) 

Since 𝑉(𝑟) is spherically symmetric, it is most convenient to use the spherical 

polar coordinates. Expressing the ∇2 operator in spherical polar coordinates, the 

Hamiltonian (8.1) becomes 

 

The representation of the square of the angular momentum operator in spherical 

polar coordinates is given by 

    

We may write 

…(8.1) 

 

…(8.2) 

 

…(8.3) 

 



   

The time-independent Schrödinger equation for the particle can be written as 

𝐻𝜓(𝑟) = 𝐸𝜓(𝑟) 

 

This equation can be solved by using the method of separation of variables. Let us 

write 

𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌(𝜃, 𝜙) 

Substituting into (8.6), 

 

 

     

The left-hand side of this equation depends only on 𝑟 and the right-hand side 

depends only on 𝜃 and 𝜙. Therefore, both sides must be equal to a constant. 

Calling this constant 𝜆, we obtain the radial equation 

      

and the angular equation 

    

8.1.1 The Angular Equation 

Equation (8.9) is an eigenvalue equation for the operator 𝐿2. We recall from 

chapter 7 that physically acceptable solutions of this equation are obtained for 

…(8.4) 
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Thus, the eigenvalues of 𝐿2 that corresponding eigenfunctions are the spherical 

harmonics 𝑌𝑙𝑚𝑙
(𝜃, 𝜙) defined in (7.20) and (7.21). The spherical harmonics 

𝑌𝑙𝑚𝑙
(𝜃, 𝜙) are also eigenfunctions of the z-component of the angular momentum 

𝐿𝑧 such that 

 

The magnitude of L in state 𝑌𝑙𝑚𝑙
 is √𝑙(𝑙 + 1)ℏ and the possible values of the 

projection 𝐿𝑧  are the (2𝑙 + 1) values of 𝑚𝑙ℏ.  

The state 𝑌𝑙𝑚𝑙
(𝜃, 𝜙) has the parity of 𝑙. 

8.1.2 The Radial Equation 

Substituting (8.10) into (8.8), the radial equation becomes 

   

If we put,  𝑅(𝑟)  =  𝑢(𝑟)/𝑟 

then the equation for the new radial function 𝑢(𝑟) is  

 

This equation shows that the radial motion is similar to the one-dimensional 

motion of a particle in the “effective” potential consequence 

 

 

…(8.11) 
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…(8.14) 

 



 

where 𝑟 is the distance of the particle from the axis. The “centrifugal force” on the 

particle is 

                              

 

Shapes of the centrifugal barrier, effective potential and Coulomb potential. 

8.2 Reduction of a Two-Body Problem to an Equivalent One-Body Problem 

In what follows we shall solve the radial equation for a hydrogenic atom, which 

consists of a nucleus and an electron interacting via the attractive Coulomb force 

which depends on the magnitude of the distance between the two. 

For a two-body system, if the potential energy depends only on the coordinates of 

one particle relative to the other, then the problem can be reduced to an equivalent 

one-body problem along with a uniform translational motion of the center of mass 

of the two-body system. 

Consider two particles, of masses 𝑚1 and 𝑚2, interacting via a potential 

𝑉(𝑟1 – 𝑟2) which depends only upon the relative coordinate 𝑟1 – 𝑟2.  

The time-independent Schrödinger equation for the system is, 



 

where 𝐸 is the total energy of the system. Let us now introduce the relative 

coordinate 

𝒓 = 𝒓𝟏 – 𝒓𝟐 

and the center of mass coordinate 

𝑅 =
𝑚1𝒓𝟏 – 𝑚2𝒓𝟐

𝑚1 + 𝑚2
 

 

The quantity 𝜇 is called the reduced mass of the two-particle system. The 

Schrödinger Equation (8.15) becomes 

 

Now, since the potential 𝑉(𝒓) depends only on the relative coordinate, the wave 

function Ψ(𝑹, 𝒓) can be written as a product of functions of 𝑹 and 𝒓: 

     

Substituting into (8.21) it can be easily shown that the functions Φ(𝑅) and Ψ(𝑟) 

satisfy, respectively, the equations   

 

…(8.15) 
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…(8.23) 

 

…(8.22) 

 



Equation (8.23) describes the motion of the center of mass. It says that the center 

of mass moves as a free particle of mass 𝑀 and energy 𝐸𝑹. 

Equation (8.24) describes the relative motion of the particles. It says that the 

relative motion is same as that of a particle of mass 𝜇 moving in the potential 𝑉(𝒓). 

Clearly 

𝐸 = 𝐸𝑹 + 𝐸𝒓 

By separating the center-of-mass motion, the solution of the problem gets 

considerably simplified. 

…(8.25) 

 


